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Astrophysical disks

e Disks are everywhere

e As matter falls in gravity, cannot lose its angular
momentum

A DISK STRUCTURE

e Can be very bright! Possible to convert ~1/2 of
gravitational energy into radiation



Source: ALMA Collaboration Source: NASA Source: NASA

PROTOPLANETARY DISKS BINARY SYSTEMS GALACTIC NUCLEI
Disks around young stars. Star looses matter to Supermassive black

companion object hole at the center of a
Site of planet formation. (black hole, neutron galaxy.

star, white dwarf).
Active nuclei can

outshine entire galaxy!



We will soon see the Simulated Image
accretion disk around the |

black hole at the center of
our galaxy

Broderick + 2011

Event
Horizon - S
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* Most disks cool efficiently

* Plasma energy dominated
by rotational rather than
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Basic physics

Thin disks Thick disks
. .. 1
* Most disks cool efficiently e Ifit cannot cool
disk puffs up.

* Plasma energy dominated

by rotational rather than e Advection

thermal dominated flow
 Disk is thin T > 1019K?

S. Noble + (2007)
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* Angular momentum is conserved — no sources and sinks
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e Circular Keplerian orbits — no energy lost and no
radiation? Obviously not reality....



Turbulence provides a solution

e Accretion rate can be large and
independent of viscosity

E(k)

Nonlinearity allows

/\ fast dissipation
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Credit: V. Lyra, youtube.com

Turbulence provides a solution

e Accretion rate can be large and
independent of viscosity

Nonlinearity allows |
/\ fast dissipation A

E(k)

Dissipation
range

k

 But Keplerian shear flows are nonlinearly stable?? i + 2006)
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This is why the matters

 Even tiny B fields are
violently unstable

e (Growth rate is fast, set
by shear, k~va/S2

T

e (Creates turbulence 1.95

R

2.19

Balbus & Hawley, RMP 70 | (1998)
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Simon et al, MNRAS 422 2685 (2012)
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The turbulence has interesting properties:

Simon et al, MNRAS 422 2685 (2012)

e Self sustaining, but depends on
microphysics

 (Generates large-scale magnetic
fields

e Fven seems similar in a 20 40 60 80 100 120
. . t rbit
collisionless plasma («unz + 2016 ed:ta)
so likely ubiquitous
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Fromang+ 2007
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Questions:

How does it depend on physical parameters?
Viscosity, resistivity, kinetic effects. .



. - | Fromang+ 2007b
Questions: Ow does it depend on physical parameters?

Viscosity, resistivity, kinetic effects.. ..
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Fromang+ 2007b

ow dpes It erend on physical parameters?
Viscosity, resistivity, kinetic effects.. ..

Questions:
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Questions: What cayses

Simon+ 2012

0O 20 40 60 80 100 120
t (orbits)

Lesur & Ogilvie 2008



Answers?

Rincon+ 2007
Riols+ 2015

MRI
/ MRI \
DYNAMO

Small-scale fluctuations
- . feed back on large scales

Shear amplifies B



Use simplest possible setup

Global domain I

Stratified shearing box ‘ Unstratified shearing box

C -

Modified frem Jacob Simon’s webpage -~

r » 0
Compressible MHD Compressible local Incompressible local
equations MHD equations MHD equations
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MRI
/ MRI \
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Small-scale fluctuations
- _ feed back on large scales

Shear amplifies B

Outline

e Dynamos
e Magnetic shear-current effect

e Statistical simulation of the dynamo
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Large-scale dynamo

* Thought experiment: given some smaller-scale turbulence

10243 simulation from JHU database

7.:1 /$

: 7




Large-scale dynamo

* Thought experiment: given some smaller-scale turbulence

will it spontaneously generate large-scale magnetic fields?






Shear amplifies B



Shearmplifies B

0:(B) =V x ((u) x (B)))

LV x (i x B) )

Small-scale fluctuations
feed back on large scales
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DYNAMO

Small-scale fluctuations
= _ feed back on large scales

Shear amplifies B

Outline

e Dynamos
e Magnetic shear-current effect

e Statistical simulation of the dynamo
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e Standard approach to dynamo has been kinematic:

Assume B < 4, hydro turbulence

“a-effect” requires symmetry breaking
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Magnetic shear-current effect

velocity shear flow + small-scale B

unstable to

Large-scale (B)
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~ Small-scale fluctuations
¥—" feed back on large scales
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z (vertical)
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() = horizontal average
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Magnetic shear-current effect

Nonzero due to magnetic
fluctuations

z (vertical)

Au thal)

() = horizontal average

Y
X (radial)\~ N




Magnetic shear-current effect

Nonzero due to magnetic
fluctuations

(Bz) (By)

Magnetic shear- N
current effect Ey I ﬁymaz <By> + ...

z (vertical)

Au thal)

() = horizontal average

"‘-\:_“\._
X (radial)\* h




Squire & Bhattacharjee JPP (2016)

Use several methods to study £((B5),)
Each agree that dynamo can work

Low Rm quasi-linear and statistical simulation Squire & Bhattacharjee ApJ (2015)
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Small-scale fluctuations
= _ feed back on large scales

Shear amplifies B

Outline

e Dynamos
e Magnetic shear-current effect

o Statistical simulation of the dynamo
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How can we relate abstract
dynamo theory to MRI cycles?

Measure £((B),) Construct exact
in nonlinear nonlinear
simulations solutions
Lesur & Ogilvie 2008 Herault+ 2011 Riols+ 2015

Shi+ 2016 Walker & Bolyrev 2017

Limited to low
Re, Rm
Relationship to
turbulence unclear

No control
Difficult to tell
what’s happening

Simon et al., MNRAS 422 2685 (2012)

20 40 60 80 100 120
t (orbits)

Statistical
simulation

Farrell & loannou
Marston & Tobias

Approximate
equations
Requires forcing
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Statistical simulation

IDEA: Evolve

/

Directly study large-scale dynamo,

ADVANTAGE: ] )
isolate mechanism

Have to use quasi-linear
approximation
Turbulence does not self-sustain
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LINEARIZE

J MRI
/ MRI \
Shear amplifies B DYNAMO
Small-scale fluctuations

- . feed back on large scales

v
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Saturated dynamo depends strongly on Pm
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Saturated dynamo depends strongly on Pm
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even though high Pm is more dissipative



Just like nonlinear MRI turbulence
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This tells us

1. The coherent large-scale dynamo is (at least partially)
responsible for the Pm dependence of MRI turbulence:

Statistical simulation similar to nonlinear MRI
turbulence.

The only possible reason for this is the dynamo.

2. The dynamo mechanism is the magnetic shear-current effect:

The kinematic effect cannot drive the observed
dynamo.



But still lots of questions:

O 20 40 60 80 100 120
t (orbits)



Simon+ 2012
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Simon+ 2012

But still lots of questions:

z (H)

 Dynamo saturation

Related to stabilization by radial MRI

MSC Dynamo Grows

Dynamo Saturates

MSC Dynamo Grows

Dynamo Saturates

e |nfluence of stratification, other
physics
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Parting thoughts

* MRI turbulence may be very common throughout the
universe.

* Wide variety of unsolved problems, persistent puzzles.

* Next frontier: collisionless MRI turbulence. Soon to see
1012K plasma at the center of our galaxy.



